摘要
针对锂离子电池荷电状态(state of charge, SOC)预测问题,采用长短期记忆循环神经网络(long short-term memory, LSTM)搭建电池SOC预测模型。利用直流电子负载对18650锂离子电池进行多工况放电,将电池电压、放电电流作为模型输入。将采集数据分为训练集、验证集和测试集,在训练集上训练模型,在验证集上调节模型超参数,在测试集上测试模型性能。采用带动量的随机梯度下降(stochastic gradient descent, SGD)进行权重更新,并加入Dropout正则化方法。在动态放电情况下,使用所提方法预测电池SOC最大绝对误差为2.0%,平均绝对误差为1.05%,验证了该方法的可行性。测试结果表明,在模型训练过程中加入Dropout正则化方法,可以有效降低网络的过拟合现象,增强模型的泛化能力。
- 单位