传统的客流量数据预测模型获取的数据维数较高,难以消除冗余数据,导致预测结果误差较大。为此本文提出了基于支持向量机回归算法的旅游短时客流量数据预测模型。首先利用局部线性嵌入算法对旅游短时客流量数据样本点进行局部重构,减小重构误差,降低数据维数,并消除客流量数据中存在的噪声数据和冗余数据。然后利用支持向量机回归算法构建旅游短时客流量数据预测模型。实验结果表明:该模型预测结果的最大百分比误差、平均百分比误差和均方误差均较低,证明该模型实现了设计预期。