摘要

现有卷积神经网络在文本分类性能上受到词向量窗口长度的影响,在研究卷积神经网络分类方法的基础上,提出一种基于循环结构的神经网络文本分类方法,该方法对文本进行单次正向及反向扫描,能够在学习单词表示时尽可能地捕获上下文信息,整体算法时间复杂度为O(n),是线性复杂度;该方法构建文本语义模型可以捕获长距离的依赖关系,使得词向量窗口长度对文本分类性能没有影响,对上下文更有效地建模。实验结果表明,该方法构建文本语义模型的准确率达到96.86%,召回率达到96.15%,F1值达到96.5%,性能优于传统文本分类算法和卷积神经网络方法。