摘要

船舶图像检索是高效管理船舶图像的关键技术,由于船舶图像类型多、复杂,使得当前船舶图像检索准确性差,无法满足船舶图像管理的实际应用要求,为了提高船舶图像检索准确性,设计了基于统计模型的船舶图像检组合优化算法。首先提取船舶图像的不同种类特征,并采用现代统计学理论中的支持向量机分别对每一种特征进行船舶图像检索,然后通过BP神经网络对每一种特征的船舶图像检索结果进行融合,实现船舶图像组合检索,最后采用具体船舶图像检索实例分析算法的性能,结果表明,本文算法解决了当前船舶图像检索算法存在的弊端,船舶图像检索成功率大幅度提升,同时可以有效减少船舶图像检索时间,改善了船舶图像检索效率,可以应用于实际的船舶图像管理系统中。

  • 单位
    青岛工学院