摘要
目前绝大多数的行人属性识别任务都是基于单张图像的,单张图像所含信息有限,而图像序列中包含丰富的有用信息和时序特征,利用序列信息是提高行人属性识别性能的一个重要途径。本文提出了结合时序注意力机制的多特征融合行人序列图像属性识别网络,该网络除了使用常见的空-时二次平均池化特征聚合和空-时平均最大池化特征聚合提取序列的特征外,还设计了空-时3D卷积注意力因子加权特征聚合分支进一步提取序列的特征。通过融合上述3个分支输出的序列的特征,使网络获得更加丰富的信息。此外在网络训练中本文在使用带权值的交叉熵损失基础上,添加了用于约束FP和FN数量的tversky损失作为网络的整体损失函数,使网络在训练过程中对查准率与查全率有更好的权衡。实验结果表明,结合时序注意力机制的多特征融合行人序列图像属性识别网络在各项评价指标中优于基于单张静止图像的方法,以及其他常见的几种特征聚合与时序建模方式。
- 单位