摘要
针对道路交通标志背景复杂多变、现有模型鲁棒性不高以及检测识别过程分步的问题,提出基于感兴趣区域(ROI)提取和卷积神经网络(CNN)相结合的端到端方法.为了突出交通图像中的感兴趣区域,应用MSER方法对原始图像进行颜色增强;应用分割技术生成不同尺度的感兴趣区域(ROI),进一步采用LeNet-5基础模型进行特征提取及区域框标记.为了解决在有限GTSRB数据集上出现的过拟合和网络鲁棒性不强的问题,结构中增加BN层;针对在训练中存在的损失震荡、损失过大等问题,提出使用Adam算法及提前停止的理念,加速了网络训练,稳定降低了损失,提高了识别精度,得到了较高的准确率.
- 单位