摘要

青色油茶果及其背景色差不大,形状特征差别明显,可用于特征识别。本文提出一种基于归一化傅里叶描述子、Hu不变矩形状特征和BP神经网络识别油茶果的方法。首先将油茶果从RGB颜色空间转换到HSV颜色空间,提取H分量后进行二值化;其次通过形态学算法去除二值化图像中的噪声;然后提取其前8阶归一化傅里叶描述子作为BP神经网络特征向量进行识别。结果显示,油茶果识别率为85%。为了进一步提高识别率,提取油茶果的7个Hu不变矩特征,利用BP神经网络识别,识别率可达100%。

全文