基于O-DAE和SVDD的汽轮机异常检测方法

作者:许伟明; 李学敏; 张祎; Maulidi Barasa; 张培泽; 易佑中
来源:浙江电力, 2023, 42(07): 102-109.
DOI:10.19585/j.zjdl.202307012

摘要

在未标记且极不平衡的监测数据中进行异常检测是能源行业目前急需解决且最具挑战性的问题之一。由于自动编码器具有强大的高维数据分析能力,使用自动编码器进行异常检测变得越来越流行。基于O-DAE(优化的深度自编码器)和SVDD(支持向量数据描述),提出一种新的异常检测方法。首先,建立了一种样本筛选机制,用于去除未标记训练集中的异常样本,使得训练模型几乎不学习异常样本的特征。其次,以自编码器的隐藏特征和重构误差作为最终特征数据进行异常检测。最后,对不同结构的深度学习方法进行研究与比较,并对某汽轮机实际运行数据进行了实验,结合支持向量数据描述检测异常。与传统异常检测方法相比,该方法的异常检测精度提高了50%,能实现更灵敏鲁棒的汽轮机设备性能无监督异常检测。

全文