针对高光谱影像非监督分类问题,从特征提取的角度提出了一种用于高光谱混合像元分类的非监督约束线性判别分析算法(UCLDA)。该算法首先利用顶点成分分析(VCA)提取端元,然后用光谱角匹配方法(SAM)构造训练样本并基于约束线性判别分析(CLDA)进行特征提取,最后用最小距离法分类。整个算法实现了非监督分类。对模拟的高光谱数据和真实的遥感影像进行了仿真研究,研究结果表明,UCLDA略优于最小二乘光谱混合分析技术,但明显好于经典的光谱角匹配分类。