摘要

通过分析在线学习平台中的教育文本,能挖掘其所蕴含的情感、认知等信息进行学业预测。然而目前在线学习成绩预测大多基于结构化数据,难以深入、精准地挖掘学习者的状态、情感等信息,影响到预测的准确性。采用深度学习技术,其中CNN模型能够有效提取局部特征,而LSTM模型能够考虑全局文本顺序的优势,能对教育短文本数据进行分类和细粒度情感倾向分析,挖掘其包含的影响学习成绩的因素,实现对在线学习成绩的有效预测。