摘要
为解决单阶段多框检测器(single shot multibox setector, SSD)算法识别较小尺寸电力部件准确率低的问题,本文提出一种注意力机制和多尺度特征融合的单阶段多框检测器(attention mechanism and multiscale feature fusion single shot multibox detector, amSSD)算法。该方法在SSD网络特征提取层引入压缩和激励网络(squeeze-and-excitation networks,SENet)结构,筛选并保留更多与目标相关的特征通道;对浅层特征图采用膨胀卷积操作,使目标语义信息更加丰富;对高层特征图进行反卷积操作,并与浅层特征进行融合,得到具有更高分辨率高语义信息的目标特征图,提高对较小尺寸电力部件的识别能力。利用实际无人机飞行数据进行测试验证,实验结果表明:本文方法能够有效地识别出电力部件,而且识别平均准确率达到89.6%,比SSD方法的识别准确率提升了6.2%。