为建立一个高效的药物-靶标相互作用(DTI)预测分类模型,针对预测DTI的常用模型传统支持向量机在参数选择中存在的问题,采用演化蛙跳算法(EFLA)优化支持向量机参数。该算法在第一阶段用量子进化算子来实现局部搜索,第二阶段利用自适应特征向量进化算子实现全局搜索。实验结果表明:演化蛙跳算法在进行预测药物-靶标相互作用实验中有较高的准确率。