摘要

针对电能质量扰动信号分类中存在波形相似、准确率低的问题,提出一种双层支持向量机的分类方法。利用可调Q因子小波变换(tunable Q-factor wavelet transform, TQWT)对信号进行5层分解并提取特征,使用经粒子群算法优化后的支持向量机对扰动信号进行第一次分类;对第一次分类中错误样本集中的类别,结合小波去噪算法和TQWT提取特征;使用优化后的支持向量机对扰动信号进行第二次分类,以提高信号的分类准确率。仿真数据实验表明,所提出的分类方法能够有效识别14类扰动,与其他分类方法相比分类准确率更高,抗噪性更强,具有一定的应用价值。