摘要
针对在高分辨率输电线路图像中,不同种类部件尺度跨越大,难以被均衡检测的问题,提出一种融合高效注意力的多尺度输电线路部件检测算法。首先在YOLO v5目标检测算法中,设计添加高效注意力模块ECBAM提高算法特征提取能力。其次根据输电线路部件的特征分布统计,使用滑动窗口对高分辨率输电线路图像进行切片,并对切片前后的图像分别使用改进后的YOLO v5算法训练模型。最后将两个模型的检测结果进行集成,得到多尺度输电线路部件检测结果。在公开的PLAD架空输电线路图像数据集上,该模型的检测性能远超现有目标检测模型,Precision可达83.2%,Recall可达92.8%,相比数据集原作者提出的模型,mAP值提升了1.6%,达到了90.8%,且能检测出未在原始数据集上标注出的隐蔽目标,验证了在高分辨率图像中检测多尺度输电线路部件的有效性。
-
单位综合业务网理论及关键技术国家重点实验室; 南京信息工程大学