摘要

深度估计作为三维重建、自动驾驶和视觉SLAM等领域中的关键环节,一直是计算机视觉领域研究的热点方向,其中无监督学习的单目深度估计技术由于具有方便部署、计算成本低等优点,受到了学术界和工业界日益增长的关注。文章首先梳理了深度估计的基本知识及研究现状,简要介绍了基于参数学习、基于非参数学习、基于有监督学习、基于半监督学习和基于无监督学习的深度估计的优势与不足;其次全面总结了基于无监督学习的单目深度估计研究进展,按照结合可解释性掩膜、结合视觉里程计、结合先验辅助信息、结合生成式对抗网络和实时轻量级网络五类对无监督学习的单目深度估计进行归纳和总结,对典型的框架模型进行了介绍和分析;然后,介绍了基于无监督学习的单目深度估计在医学、自动驾驶、农业、军事等领域的应用;最后,简单介绍了用于无监督深度估计的常用数据集,提出了基于无监督学习的单目深度估计未来研究方向,并对这个快速增长领域中的各方向研究进行了展望。