摘要

体质量是评价家禽生长状况的关键指标,但家禽姿态的变化会影响体质量估测精度。本研究提出了一种SE-ResNet18+fLoss网络对平养模式下黄羽鸡姿态关键帧进行识别,融合了注意力机制SE模块和残差结构,并改进了损失函数,通过Focal Loss监督信号来解决样本不平衡问题,同时引入梯度加权类激活图对末端分类规则的合理性进行解释。利用4 295幅鸡只图像构建数据集,测试集中鸡只的站立、低头、展翅、梳理羽毛、坐姿和遮挡6类姿态情况识别的F1值分别为94.34%、91.98%、76.92%、93.75%、100%和93.68%;黄羽鸡姿态关键帧的识别精确率为97.38%、召回率为97.22%、F1值为97.26%、识别速度为19.84 f/s,识别精度、召回率和F1值均优于ResNet18、MobileNet18 V2和SE-ResNet18网络,在提高黄羽鸡姿态关键帧识别精度的同时保证了实时性,为准确估测家禽体质量提供了技术支持。