摘要

随着5G时代的来临,诸如工业区,校园网等开放性园区网络中存在大量的物联网(Internet of Things,IoT)终端, IoT终端由于其数据流量巨大,伪造IoT终端进行网络攻击的问题日益严重.现有IoT终端识别技术在面对海量数据时计算资源的成本逐渐提高.针对以上问题,提出了基于文件分时索引的大规模流量实时IoT终端识别算法.首先,建立内存分时索引元数据;其次,使用文件的分时索引来存储构建会话的中间数据;最后,控制内存分时索引元数据触发从少量文件中提取特征并进行IoT终端识别.实验中,在不损失IoT终端识别算法精度条件下,仅消耗少量磁盘,可将内存消耗降低92%.实验结果表明,该技术能够用于实时IoT终端识别框架中.

全文