摘要

塔里木盆地顺北地区超深断控缝洞型储集体发育,近年来不断有高产井涌现;同时,大量研究证实高角度走滑断裂对油气藏的运移和聚集起决定性作用。受“断控储集体”埋藏深,且走滑断裂断距小、难闭合等因素的影响,顺北地区地震资料信噪比低、断面特征不清晰,导致走滑断裂检测及空间解释难度较大。针对上述超深走滑断裂检测研究面临的难点,文中提出深度学习与边缘增强相结合的多尺度断裂综合检测技术:首先将走滑断裂按规模划分为主干断裂、伴生次级断裂、小尺度裂缝;通过正演主干断裂、次级断裂、裂缝等不同断裂模式的地震响应特征并进行方法实验,认为可应用U-Net卷积神经网络深度学习技术识别主干断裂、振幅梯度矢量凌乱性检测技术识别伴生次级断裂、Aberrance增强属性识别小尺度裂缝。将该套技术应用于顺北地区走滑断裂实际检测中,取得了显著效果。