摘要
针对在人脸表情识别中普通卷积神经网络难以提取有效特征、网络模型参数复杂等问题,提出了一种多尺度融合注意力机制网络(multi-scale integrated attention network,MIANet)。为了同时增加网络的宽度和深度又避免冗余计算,在网络中引入Inception结构,用于提取图像的多尺度特征信息。使用高效通道注意机制(efficient channel attention,ECA),强调与面部表情相关的区域抑制不相关的背景区域,提高重要面部特征的表达能力。在卷积层中采用深度可分离卷积,减少网络参数,防止过拟合。使用提出的方法在公开数据集FER-2013和CK+上进行实验,分别取得了95.76%和72.28%的准确率。实验结果表明,该方法识别效果较好,泛化能力较强,在人脸表情识别中对网络结构设置和参数配置方面具有一定的参考价值。
- 单位