摘要

针对KFCM算法对初始聚类中心敏感导致聚类效果不好等问题,提出一种基于杂草算法(IWO)优化的模糊核聚类算法(IWO-KFCM),将其运用于轴承时频谱图的状态识别。通过小波变换获取轴承运行状态的时频图像,利用灰度梯度共生矩阵提取图像的纹理特征,提出基于可分性测度构造IWO算法的适应度函数;将IWO算法优化获取的初始聚类中心输入KFCM,实现时频谱图的聚类识别。最后进行多类轴承状态数据的测试,验证所提算法的有效性和优越性。

  • 单位
    台州科技职业学院