摘要

药物相互作用(Drug-drug Interaction,DDI)是指不同药物存在抑制或促进等作用.现有DDI预测方法往往直接利用药物分子特征表示预测DDI,而忽略药物分子中不同原子对DDI的影响.为此,提出基于多层次注意力机制和消息传递神经网络的DDI预测方法.该方法将DDI建模为通过学习基于序列表示的药物分子特征实现DDI预测的链接预测问题.首先,建立基于注意力机制和消息传递神经网络的原子特征网络,结合提出的基于分子质心的位置编码,学习不同原子及其相关联化学键的特征,构建基于图结构的药物分子特征表示;然后,设计基于注意力机制的分子特征网络,并通过监督和对比损失学习,实现DDI预测;最后,通过实验证明该方法的有效性和优越性.