摘要
针对现有DC/DC电路故障预测中以距离作为故障特征参数存在的不足,提出了将分段动态时间弯曲距离作为DC/DC电路故障特征参数,并将此特征参数与长短时记忆神经网络(Long Short-Term Memory,LSTM)算法相结合,对DC/DC电路进行故障预测。首先,选择电路输出电压作为监测信号;然后,利用动态时间弯曲算法计算其与无故障输出电压的分段动态时间弯曲距离作为电路的故障特征参数;最后,基于LSTM预测模型实现电路故障特征参数时间序列预测。以Boost电路为例进行了仿真实验,验证了该方法的有效性和准确性。
- 单位