摘要

跨越察尔汗盐湖地区的750kV柴鱼输电线路是国家西部能源运输通道上重要的一环,受盐湖地区特殊的地质环境与人类活动影响,使得部分杆塔塔基发生不均匀沉降,严重威胁到输电线路的安全运行。针对盐湖地区目前存在的杆塔地基变形破坏问题,利用小基线集合成孔径雷达干涉测量(SBAS-InSAR)技术对杆塔基础变形失稳前2018年的Sentinel?1A数据开展遥感解译,获取了盐湖地区地面沉降分布情况。基于频率比法,筛选出与地面沉降相关性较强的8种评价因子构建盐湖地区地面沉降易发性评价指标体系,采用多层感知器神经网络(MLPNN)、逻辑回归(LR)、贝叶斯网络(BN),对比分析了盐湖地区地面沉降的易发性评价效果和精度。评价结果表明,MLPNN、LR、BN的评价精度均较高,分别为0.85、0.84、0.82。这表明,通过遥感解译获得地面沉降样本数据与机器学习相结合的方法是盐湖地区输电线路杆塔地面沉降易发性评价的有效手段;同时,评价结果可为输电线路杆塔监测、运行管理及新塔选址提供参考。