摘要
基于解释结构模型和因果图法,选取12个具有代表性的定性和定量因素,在大量数据不完备的情况下提出了建立贝叶斯网络液化模型的方法。以2011年日本东北地区太平洋近海地震液化不完备数据为例,采用总体精度、ROC曲线下面积、准确率、召回率和F1值5项指标对模型进行综合评估,并与径向基神经网络模型进行对比。结果表明:贝叶斯网络液化模型的回判和预测效果都优于径向基神经网络模型,且对于数据缺失的样本的预测效果也较理想。此外,该模型对于不同土质的液化评估均有较好的适用性。分类不均衡和抽样偏差会对模型的学习和预测效果产生很大影响,建议应同时采用上述5项评估指标进行综合评估模型的优劣。
-
单位海岸和近海工程国家重点实验室; 大连理工大学; 土木工程学院