摘要

基于多波束对长江河道底质分类关键问题进行了研究,对多波束反射强度数据进行改正并对多波束声呐图像进行预处理,采用灰度共生矩阵对底质反向散射强度图像进行纹理特征提取,最后将提取底质图像样本作为自组织特征映射神经网络和随机森林两种分类方法的训练数据,使用训练好的预测分类模型对反向散射强度图像进行全图底质分类.实验结果表明,SOM与随机森林分类方法的总体分类精度分别达到了82.5%与85.4%,对底质声呐图像实现了较好的预测分类效果.