摘要
K-SVD是非常经典的字典学习算法,该算法对稀疏系数矩阵和字典矩阵同时更新,在一定程度上提高了算法收敛速度,降低了运算复杂度。但是该算法得到的字典中噪音原子和无噪原子相似度高,因此字典的相干性较高。为了降低字典相干性,论文基于K-SVD算法,提出了一种低相干性字典学习的方法,即在K-SVD算法极小化目标函数下,添加了一项刻画字典相干性的惩罚项,并将学习得到的字典用于图像去噪。实验结果表明该方法不仅保证了信号恢复高度一致性和字典低相干性这两个目标,还提高了稀疏编码算法的收敛速度,从而在图像去噪中获得高质量的图像。
- 单位