摘要

目的 评价并比较人工神经网络、贝叶斯网络、随机森林三种机器学习算法在脑出血中医辨证分类中的分类效果。方法 采用上述三种方法分别对518例脑出血急性期患者的中医四诊信息进行建模,并通过准确率、灵敏度、特异度来评价模型分类效果。结果 三种方法中,随机森林的分类效果最好,准确率、中经络正确率、中脏腑正确率分别为81%、80%、81%;人工神经网络次之,分别为73%、74%、71%;贝叶斯网络最差,分别为60%、74%、51%。结论 考虑到随机森林在分类性能、建模时间、可解释性、特征筛选、简便性等方面的优点,我们更推荐在脑出血中经络和中脏腑的辨证分类中采用随机森林模型来辅助诊断。