摘要

无论是在智能驾驶系统中,还是在智能导盲系统中,道路标线的检测都是一项重要内容。针对传统斑马线识别方法精度低、速度慢的问题,提出了利用深度可分离卷积网络改进SegNet模型的语义分割方法,通过网络爬虫以及手动数据标注,经过Tensorflow深度学习框架训练,其模拟检测达到了较好的结果。试验结果表明,由自行构建的斑马线数据集,训练后的模型每帧运算速度在59 ms内,对斑马线区域分割的像素精度达98.1%,交并比达91.6%。此运算速度以及分割精度满足大部分智能导航系统的需求,为斑马线识别的机器视觉识别提供了技术支持。