摘要
随着信息的爆炸式增长,现有的搜索引擎在很多方面不能满足人们的需要。Web文档聚类可以减小搜索空间,加快检索速度,提高查询精度。提出了一种融合SOM(Self-Organizing Maps)粗聚类和改进PSO(Particle Swarm Optimization)细聚类的Web文档集成聚类算法。首先根据向量空间模型表示法,用特征词条及其权值表示Web文档信息,其次用SOM算法对文档特征集进行粗聚类,得到一组输出权值,然后用这组权值初始化改进的PSO算法,用改进PSO算法对此聚类结果进行细化,最终实现Web文档聚类。仿真结果表明,该算法能有效提高文档查询的查准率和查全率,具有一定的实用价值。
- 单位