摘要

[目的 ]基于深度学习算法,建立多隐藏层的杉木树高-胸径神经网络模型,探索一种更高效低偏的树高模型研建方法,提高杉木树高的预测精度。[方法 ]利用福建省将乐国有林场34块杉木样地的2 898组树高-胸径调查数据,基于传统回归建立10个广义树高-胸径模型,筛选出精度最高的模型作为对照。同时基于H2O平台的深度学习算法,建立70个不同结构的树高-胸径DLA模型,通过分析比较,确定最适宜预测杉木树高的模型结构,与传统最优模型进行比较。[结果 ]建立的树高-胸径DLA模型均能较好地描述杉木的树高-胸径间关系,R2都在0.84以上,大于最优传统模型,RMSE和MAE小于传统模型。精度最高的DLA模型结构包含6个隐藏层,每层各340个神经元。[结论 ]本研究基于深度学习建立的杉木树高-胸径DLA模型,其拟合精度与预测精度略高于传统的广义树高-胸径模型,尤其在预测较高的林木时,更为明显,能够用于研究区杉木树高的预测。