针对目前推荐系统广泛存在的数据稀疏性、预测评分不准确和神经网络模型复杂度较高等问题,提出深度神经网络模型ProfileDNN.模型借鉴自然语言处理中的Word2Vec表征学习方法预训练物品的嵌入向量,并利用物品的嵌入向量构建物品和用户画像,最后基于深度神经网络模型学习用户对物品的预测评分.基于3个公共数据集的对比实验表明,相比同类模型,ProfileDNN模型的复杂度更低,且推荐准确率最高提升达1.1%.