摘要

利用python语言搭建了一整套空气质量神经网络预测系统,底层利用Keras设计并建立了基于tensorflow的神经网络模型。选择日平均气压、日平均气温、日平均相对湿度、日降水量、日平均风速、前1日空气质量因子监测数据等因素作为模型输入变量,分别针对广东省所有监测站点和地市的空气质量因子(PM2.5、PM10、NO2、SO2、CO、O3、AQI)进行预测,结果表明,7个因子的地市平均相对误差值为16.15%~27.7%,地市相关系数为0.36~0.77,该模型在城市空气质量预测中具有良好的效果。