摘要
准确的命名实体识别是结构化电子病历的基础,对于电子病历规范化编写有着重要的作用,而现今的分词工具对于专业的医疗术语无法做到完全正确的区分,使得结构化电子病历难以实现.针对医疗实体识别中出现的问题,本文提出了一种在命名实体识别领域中改进的BiLSTM-CRF深度学习模型.模型将文字和标签结合作为输入,在多头注意力机制中使模型关注更多的有用信息, BiLSTM对输入进行特征提取,得到每个文字在所有标签上的概率, CRF在训练过程中学习到数据集中的约束,进行解码时可以提高结果的准确率.实验使用人工标注的1 000份电子病历作为数据集,使用BIO标注方式.从测试集的结果来看,相对于传统的BiLSTM-CRF模型,该模型在实体类别上的F1值提升了3%–11%,验证了该模型在医疗命名实体识别中的有效性.
- 单位