摘要

作为道路网中普遍存在的显式模式之一,格网模式蕴含了丰富的城市空间格局信息,识别道路格网模式是实现自动化、智能化地图综合的关键前提。针对现有格网模式识别方法较少考虑多层次网眼特征,存在训练样本多样性不足等问题,本文提出一种基于多层次网眼特征和VAE-PNN模型的城市道路格网模式识别方法。首先对原始路网数据进行化简,之后设计了内部正交函数、格网形态描述和邻域相关关系的多层次网眼特征,进而利用变分自编码器(VAE)增强训练样本多样性,最后借助概率神经网络(PNN)模型实现道路格网模式分类识别。实验结果表明,综合考虑多层次网眼特征能够准确识别不同类型、不同形态的道路格网模式,通过VAE样本增强有效提升分类模型性能和格网模式识别精度。