摘要

立足于深度学习,提出面向细粒度图像的自适应三元组网络的鲁棒图像检索算法。首先,提出的视觉显著性检测方法被用来去除图像噪音,以便提取图像中目标主体辨识度更高的深度特征;然后,添加特征增强模块来提高深度特征的表征能力和鲁棒性;最后设计三元组网络,弥补传统分类模型特征判别能力不足的缺陷,获取更适用于细粒度图像检索的网络模型。经实验验证,采用视觉显著性检测、特征增强模块和自适应三元组损失函数方法构建的网络模型提取的深度特征不仅加快检索效率,同时也提高了检索精度。

全文