摘要

建立了粒子群算法优化的人工神经网络预测模型。以工艺参数为输入变量,以单因素试验得到的Ni-Fe合金镀层的性能指标为输出变量,将粒子群算法优化的人工神经网络预测模型的预测结果与传统BP神经网络预测模型的预测结果进行了比较。结果表明:粒子群算法优化的人工神经网络预测模型具有更高的预测精度。通过建立模型得到了各个工艺参数对Ni-Fe合金镀层性能指标的评价指标权重。当电流密度为1.0~1.5A/dm2、镀液温度为45℃、搅拌速率为1 000~1 200r/min时,Ni-Fe合金镀层的表面粗糙度和腐蚀速率均处于较低水平。