针对三维扫描获取的带噪声和离群点的点云数据,提出了改进的去噪算法。通过K-近邻搜索建立散乱点云之间的拓扑关系,进而采用高斯影响函数作为核函数来估计当前测点对周围邻近点的影响力,从而限制噪声并剔除离群点。重点讨论了密度熵的概念以及如何优化高斯核函数的参数,解决了窗宽尺寸在使用中不易确定的问题。仿真实验证明,该算法能够很容易地检测出离群点,同时也避免了将模型上的点误判为离群点的问题。