摘要
基于无人机和巡检机器人搭载的多光谱成像检测是高压设备非接触检测的发展趋势,而主要电气设备的识别是其绝缘状态智能诊断的基础。该文建立了绝缘子、均压环、防振锤、套管和导线训练与测试数据库;基于YOLOv4,改进了Mosaic数据扩充算法,使网络误差降低了0.7,识别准确度提高到84.3%;研究了基于边界框回归的交并比(IoU)算法对不同尺度检测目标的影响,提出了对大、小目标分别采用CIoU和GIoU的训练策略;研究了K-means和分层聚类算法对自建数据库的标注值宽高数据聚类效果及检测结果的影响;基于误差、识别准确度和训练速度,研究并优化了YOLOv4的网络参数,改进后的模型训练误差降低了3%,识别准确度提高了0.8%,较好地实现了主要电气设备的识别。该研究可用于多光谱成像电气设备运行状态的现场诊断。
-
单位新能源电力系统国家重点实验室; 华北电力大学