摘要
海表温度(SST)是重要的海洋水文参数。对其进行精准预测在海洋相关领域中至关重要。深度学习强大的分析能力使其近年来广泛应用于SST预测中,但SST时间序列波动性和随机性的特点使其精准预测仍然具有挑战性。首先,采用变分模态分解(VMD)作为去噪模块,降低SST序列噪声对预测结果的影响。进而,为了解决深度模型在SST预测中存在的滞后现象,采用迁移学习的方法,将长短时记忆网络(LSTM)与宽度学习系统(BLS)相结合,使用LSTM作为BLS的特征映射结点,提高了预测精度。最终,提出了一种基于VMD-LSTM-BLS的SST预测模型。选取我国东海海温进行实例验证。通过与基准模型支持向量机、LSTM、门控循环单元以及现有的深度模型进行比较,证明了提出模型在SST预测中具有相对稳定、高效的优势,为SST预测的发展提供了新思路。
-
单位南京信息工程大学; 自动化学院