针对传统视觉定位系统所存在的检测精度低等缺点,提出一种基于改进YOLOv5的自定义靶标视觉定位算法。为进一步增强网络的检测能力,分别融入具有多层感受野与细粒度的模块与改进的特征增强模块,利用Distance-IOU与Focal Loss改进损失函数;使用快速解码算法得到编码信息。实验结果表明,在自制数据集上,改进后的YOLOv5模型获得较好的平均准确精度得分与检测速度,满足实时性与准确性的需求,为视觉定位提供了一种的解决方案。