摘要
针对静态词向量语义表征能力弱、传统模块特征抽取不全面等问题,提出了结合MacBERT和多尺度融合网络的在线课程评论情感分析模型。MacBERT模型根据词的具体上下文进行动态编码,提升词的语义表征能力。多尺度融合网络用于捕捉评论文本多层次局部情感特征和全局上下文特征,软注意力机制用于计算每个特征的重要程度,由输出层得到情感分类结果。在真实在线课程评论文本数据集进行实验,结果表明,结合MacBERT和多尺度融合网络模型的F1分数达到了95.27%,高于实验对比模型,证明了模型的有效性。
- 单位