以机器视觉技术为基础,利用卷积神经网络对樱桃缺陷进行检测与识别,并进行验证。结果表明,正常果樱桃识别准确率为99.25%,缺陷果樱桃识别准确率为97.99%,识别速度为25个/s;通过与其他方法进行对比,试验方法能够准确检测并识别多种缺陷类型。