摘要

近年来,PM2.5已成为雾霾爆发的主要污染物之一,人口长期暴露在高浓度的PM2.5中可能会大大的提高居民患病的几率,危害居民身心健康。本研究以空气污染严重且人口高度集中的北京市作为研究区,以2019年北京市的PM2.5浓度监测数据、人口空间分布栅格数据及不同人群的长期呼吸量等为数据基础,构建了"污染物浓度—暴露人口—呼吸量"的PM2.5人口暴露剂量评估模型,进而对北京市2019年的PM2.5人口暴露强度空间分异特征及不同人群的暴露剂量差异进行分析。结果表明:①2019年北京市的PM2.5浓度在冬季时最高,日均浓度达48.89μg/m3,并均呈现出北低南高的整体态势;②PM2.5人口暴露量存在显著的空间分异特征,不同人群的PM2.5暴露量均呈现出由城中心向周边减弱的整体态势,高暴露区主要集中于城区地带;③不同性别、年龄组人群的PM2.5人口暴露强度存在明显的空间分异特征,且城市内部不同人群的PM2.5暴露剂量也存在明显差异;④PM2.5的暴露风险并非完全取决于污染物浓度的大小,而是由污染源浓度和暴露受体的空间分布特征等多方面共同决定,北京城区的高PM2.5人口暴露区才是高风险区,是未来政府有效防控污染物危害的核心区。