摘要

当前机器学习方法不断创新发展,为遥感数据的分析利用提供了很好的平台。结合西南天山柯坪地区沉积岩的典型地质特征,针对1:5万区域地质调查数据,利用Landsat 8数据9个波段的遥感信息进行机器学习方法解译。为增强机器学习过程中参与变量数目,在原始9波段数据的基础上分别采用比值法增强方式、主成分分析法增强方式进行数据叠加。为减弱地质体内部纹理信息,同时不影响地质体之间的边界,笔者采用双边滤波的形式对遥感数据进行进一步处理。选用的极限随机树方法、直方梯度增强随机树、随机森林3种机器学习方法整体识别精度均超过93%,尤其是极限随机树方法达到94.18%。本研究方法可用在其他地质信息解译、地质填图中,值得推广。