摘要
光伏发电功率存在波动性,且光伏出力易受各种气象特征影响,传统TCN网络容易过度强化空间特性而弱化个体特性。针对上述问题,文中提出一种基于VMD和改进TCN的短期光伏发电功率预测模型。通过VMD将原始光伏发电功率时间序列分解为若干不同频率的模态分量,将各个模态分量以及相对应的气象数据输入至改进TCN网络进行建模学习。利用中心频率法确定VMD的最优分解模态分解个数。在传统TCN预测模型的基础上,使用DropBlock正则化取代Dropout正则化以达到抑制卷积层中信息协同的效果,并引入注意力机制自主挖掘并突出关键气象输入特征的影响,量化各气象因素对光伏发电的影响,从而提高预测精度。以江苏省某光伏电站真实数据为例进行仿真实验,结果表明所提预测方法的RMSE为0.62 MW,MAPE为2.03%。
- 单位