摘要
风机持续健康稳定运行是电站机组安全性与经济性的重要保障,故障预警技术对于提高风机运行可靠性和降低维护成本尤为重要。为此,本文提出一种基于长短期记忆(Long short-term memory, LSTM)神经网络与贝叶斯优化算法的早期故障预警方法,充分挖掘电站风机正常运行数据,采用LSTM网络挖掘多种参数的关联特性及历史数据的时序特性,建立风机运行状态预测模型。为了提高预测模型的精确度,利用贝叶斯优化算法优化并设定LSTM网络的最佳超参数组合。考虑模型预测偏离度的非平稳性和多极值特点,引入广义极值理论从正常运行工况中确定报警阈值,以实现设备的早期故障预警。最后,将所提出的算法应用于某燃煤电站引风机故障预警中。结果表明:贝叶斯优化算法优化后的LSTM神经网络不仅可以精确表征风机在正常状态下运行行为,同时能够准确地获取风机的故障信息,从而能够在故障发生前4 h发现异常,实现故障预警。
-
单位华北电力大学; 北京中交国通智能交通系统技术有限公司