摘要
针对两阶段目标检测算法中模型存在目标识别率低、部分小目标物漏检等问题,提出了一种基于判别相关分析的双注意力机制的目标检测算法。该算法通过改进Faster R-CNN主干网络,引入判别相关分析技术最大化两个特征集中对应特征的相关关系,同时最大化不同类之间的差异,来保证信息间的交互,有效缓解常规特征融合方式存在的特征提取能力不足问题。同时,结合残差结构构建残差双注意力机制,进行深层次的特征提取,来弥补深度CNN后高分辨率信息弱化问题,采用混合卷积层的设计在扩大感受野的同时又减少了信息损失,最大限度地保证了网络的特征提取性能。采用PASCAL VOC2007、KITTI以及Portrait三类数据集对网络进行训练,并将提出的算法模型与多个经典目标检测算法进行对比。实验结果表明,提出的算法具有较高的检测精度。
- 单位