摘要

目的脑电图(electroencephalogram,EEG)是一种灵活、无创、非侵入式的大脑监测方法,广泛应用于运动想象脑机接口系统中,运动想象脑电图识别精度是决定系统性能的关键因素。然而由于脑电图采集时间长、个体差异大等原因,导致单个受试者可用于模型训练的样本数量少,严重影响了卷积神经网络在脑电图识别任务中的表现。为此,本文提出一种镜卷积神经网络(mirror convolutional neural network,MCNN)模型,使用集成学习与数据扩增方法提高运动想象脑电图识别精度。方法在训练阶段,基于源脑电通过互换左右侧脑电通道构造镜像脑电,并与源脑电一起用于源卷积网络训练,有效扩增了训练样本;在预测阶段,复制已训练源卷积网络作为镜像卷积网络,将测试集中的源脑电输入源卷积网络,构造的镜像脑电输入镜像卷积网络,集成源卷积网络与镜像卷积网络输出的类别预测概率,形成最终类别预测。结果为了验证模型的有效性和通用性,基于3种不同运动想象脑电图识别卷积网络模型分别构造镜卷积网络,并在第4届脑机接口大赛2a与2b数据集上进行实验验证。实验结果与原始模型相比,运动想象四分类和二分类准确率分别平均提高了4.83%和4.61%,显著提高了识别精度。结论本文面向运动想象脑电图识别,提出了镜卷积神经网络模型,通过集成学习与数据扩增方法提高运动想象识别精度,有效改善了运动想象脑机接口性能。