摘要
辽河坳陷中央凸起中南部基底变质岩类型多样,测井岩石物理参数与岩性之间的映射关系复杂,测井响应多解性强,导致传统的测井岩性识别方法结果不精确。本文采用基于自适应粒子群参数优化的最小二乘支持向量机算法进行变质岩的测井多参数岩性识别。通过变质岩测井岩石物理分析,优选出对岩性敏感的自然伽马、自然电位、声波时差、深侧向电阻率、密度和补偿中子6种测井参数作为特征输入,以自适应粒子群算法优化最小二乘支持向量机参数,构建岩性判别模型,预测目的层段变粒岩、混合花岗岩、混合片麻岩、混合岩和角闪岩5种类型变质岩的垂向分布。与支持向量机、K最邻近及人工神经网络算法的岩性识别效果相比,本方法判别准确率最高,符合率为90.17%,在随机划分的10次样本预测中本模型稳定性最强,分类性能最好,平均AUC值为0.974,有效解决了深层基底变质岩储层精细描述中的岩性精准识别难题。
- 单位