半监督的双协同训练要求划分出的2个数据向量相互独立,不符合真实的网络入侵检测数据特征。为此,提出一种基于三协同训练(Tri-training)的入侵检测算法。使用大量未标记数据,通过3个分类器对检测结果进行循环迭代训练,避免交叉验证。仿真实验表明,在少量样本情况下,该算法的检测准确度比SVM Co-training算法提高了2.1%,并且随着循环次数的增加,其性能优势更加明显。